

Past Papers Higher Chemistry

$\begin{array}{c} 2023 \\ \hline \text{Marking Scheme} \end{array}$

Grade	Mark Required		9/ di data da salai i
Awarded	(/ ₁₂₀)	%	% candidates achieving grade
Α	80+	66.7%	32.6%
В	65+	54.1%	23.9%
С	50+	41.7%	21.3%
D	35+	29.2%	14.4%
No award	<35	<29.2%	7.8%

Section:	Multiple Choice	Extended Answer	Assignment
Average Mark:	17.6 /25	49.7 /95	No Assignment in 2023

	20)2:	3 Higher Chemistry Marking Scheme
MC Qu	Answer	% Correct	Reasoning
1	A	71	☑A Electronegativies Na = 0.9 & I = 2.7 ∴ difference = 1.8 (least ionic character) ☑B Electronegativies Na = 0.9 & F = 4.0 ∴ difference = 3.1 ☑C Electronegativies K = 0.8 & I = 2.7 ∴ difference = 1.9 ☑D Electronegativies K = 0.8 & F = 4.0 ∴ difference = 3.2 (greatest ionic character)
2	D	89	 ☑A N-H bond in structure ∴ hydrogen bonding would occur between molecules ☑B O-H bond in structure ∴ hydrogen bonding would occur between molecules ☑C N-H bond in structure ∴ hydrogen bonding would occur between molecules ☑D No N-H, O-H or H-F bonds in structure ∴ no hydrogen bonding between molecules
3	С	85	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
4	A	69	☑A Activation of reverse reaction = 200 - 50 = +150kJ mol ⁻¹ ☑B Enthalpy change for reverse reaction = 50 - 150 = -100kJ mol ⁻¹ ☑C Activation of forward reaction = 200 - 150 = 150kJ mol ⁻¹ ☑D Enthalpy change for forward reaction = 150 - 50 = +100kJ mol ⁻¹
5	C	91	time = 10s : rate = $\frac{1}{\text{time}}$ = $\frac{1}{10s}$ 0.1 s ⁻¹ Extrapolate from graph: when rate = 0.1s ⁻¹ then concentration = 0.25 mol l ⁻¹
6	В	74	 ☑A catalyst speeds up reaction so dotted line would be steeper initially ☑B dotted line is steeper at start and meets full line at horizontal end of line ☑C catalyst does not change final concentrations so dotted line would meet full line at end ☑D catalyst speeds up reaction so dotted line would be steeper initially
7	В	80	1 mol CH ₃ OH = -726 kJ mol^{-1} = $32g \times \frac{-145.2}{-726}$ = $6.4g$
8	A		☑A Sodium Na atom (covalent radius = 160pm) is larger than sodium Na ⁺ ion (ionic radius = 102pm) ☑B Chloride Cl ⁻ ion (ionic radius = 181pm) is larger than chlorine Cl atom (covalent radius = 100pm) ☑C Magnesium Mg ²⁺ ion (ionic radius = 72pm) is smaller than magnesium Mg atom (covalent radius = 140pm) ☑D Oxygen O atom (covalent radius = 64pm) is smaller than oxide O ²⁻ ion (ionic radius = 140pm)
9	C	87	 ☑A Covalent molecular is found in both elements e.g. O₂ and compounds e.g. H₂O ☑B Covalent network is found in both elements e.g. C (diamond) and compounds e.g. SiO₂ ☑C Monoatomic structures are only found in elements ☑D Ionic structures are only found in compounds containing metals and non-metal elements
10	В	72	$\boxtimes A$ 2-methylbutanal $C_5H_{10}O$ is <u>not</u> an isomer of hexanal $C_6H_{12}O$ $\boxtimes B$ 3-methylpentan-2-one $C_6H_{12}O$ is an isomer of hexanal $C_6H_{12}O$ (same formula different structure) $\boxtimes C$ 2,2-dimethylbutan-1-ol $C_6H_{14}O$ is <u>not</u> an isomer of hexanal $C_6H_{12}O$ $\boxtimes D$ 3,3-dimethylpentanal $C_7H_{14}O$ is <u>not</u> an isomer of hexanal $C_6H_{12}O$

			0		H			Q		H
11	C	83		:	1	condens	ation			
			-C-OH	H-	N-	water rem	oved -	-c	_	N-
			carboxyl group	ar	nine	at join	L	pep	tide	link
			☑A Formation of carbon mon	oxide indic	ated incom	plete comb	ustion no	t comple	ete co	mbustion
12	D	50	☑B Formation of carbon mon			•		•		mbustion
1-	U	30	EC enthalpy of combustion is the complete combustion of 1 mole of a substance							
				ID The energy change for the complete combustion of 1 mol of a substance A ethyl ethanoate and water in B will react to form ethanol and ethanoic acid and form an equilibrium						
			B ethyl ethanoate and water i							
	_		▼C ethanol and ethanoic acid re							•
13	D	28	ethyl ethanoate and water i							
			☑D Flask A is the reactants at equilibrium eventually with			•		•		
			flasks at the same cocentro	•	oute, water,	ernanor ana i	emanoic	acia pi esi	2111 1111	DOTT
			Write Down main species	IO ₃ -				I ₂		
			Balance all atoms other than oxygen and hydrogen	2 IO ₃ -				I2		
14	C	70	Balance O by adding H₂O to other side	2103				I2	+ 61	H ₂ O
			Balance H by adding H⁺ ions to other side	2103-	+ 12H⁺			I2	+ 61	1 ₂ O
			Balance charge by adding e to most positive side	2IO ₃ -	+ 12H⁺	+ 10e ⁻		I2	+ 61	H ₂ O
			☑A Condensation: 2 molecule	-			_			at join
15	D	78	■B Hydration: Addition reac				a C=C dou	ıble bon	d	
			☑ C Reduction: decrease in ox☑ D Oxidation: increase in ox		-		→ C ₆ H ₅ O ₂	N) O:H	ratio	1:7 → 2:5
			☑A 3x -OH group makes A t							
16	В	46	☑B no -OH groups makes B t	he least po	lar molecul	e and B is t	he 1 st pe	ak left t	o righ	nt (Z)
	D		☑C 2x -OH group makes C th	ie 3 ^{ra} most	polar moled	cule and C is	s the 2 ^{no}	peak le	t to r	right
			■D 6x -OH group makes D tl ■A Draft shield would reduce	ne most por	iai moiecuie	e and D is i	ne 4''' pe	uk iett	o rigi	111
17		E 0	B the thermometer in the a			_	and migl	nt give ir	accur	rate temp
17		\sim	☑C glass beaker would reduc	•			_	_		• 1
			☑D Stirring the water would			and give a	more ac	curate t	emp	
	_		■A head of soap in ionic and		•	مممال المعاد	live a torio		- :1	
18	В	85	☑B ionic head dissolves in po ☑C head of soap in ionic and	iar water a therefore	na non-poid polar	ir tall alsso	ives in no	on-poiar	011	
			☑D ionic head is polar and di							
			☑A unreacted nickel oxide m						akes	place
	_		☑B the filtration of nickel o							
19	C	53	☑C the unreacted nickel oxic							
			removes the water from					•		
			☑D the unreacted nickel oxid ☑A ethanal CH3CHO is an alc					ives hinc	۷	
20	D	7/	MD athonois soid CU COOU		عرم امنم مناب	امصدييمما منالم	بيط لمحمنا	alkalis.		
20	20 B	3 / 6	EC propanone CH ₃ COCH ₃ is a	ketone an	d does not i	react with	alkalis			
			⊠ D ethan-1-ol CH₃CH₂OH is	a primary c	alcohol and	does not re	act with	alkalis		

21	D	94	 ☑A Secondary alcohol: 2 carbons directly attached to the carbon with -OH group ☑B Secondary alcohol: 2 carbons directly attached to the carbon with -OH group ☑C Tertiary alcohol: 3 carbons directly attached to the carbon with -OH group ☑D Primary alcohol: 1 carbon directly attached to the carbon with -OH group 4-methylpentan-2-one is a ketone which reduces to form the secondary alcohol 4-methylpentan-2-ol. 					
22	Α	68	×16) = 72+12+16 = 100g ×16) = 72+14+16 = 102g → 4-methylpentan-2-ol C ₆ H ₁₄ O					
			1mol 100g	1mol 102g				
23	D	42	$gfm O_2 = 32g$.: n o. of mol = $^{mass}/_{gfm} = ^{16}/_{32}$ $\blacksquare A gfm CO = 28g$.: n o. of mol = $^{mass}/_{gfm} = ^{21}/_{28}$ $\blacksquare B gfm CO_2 = 44g$.: n o. of mol = $^{mass}/_{gfm} = ^{44}/_{44}$ $\blacksquare C gfm NO_2 = 46g$.: n o. of mol = $^{mass}/_{gfm} = ^{46}/_{44}$ $\blacksquare D gfm N_2O_4 = 92g$.: n o. of mol = $^{mass}/_{gfm} = ^{46}/_{92}$	= 0.75mol = 1.0mol = 1.0mol				
24	A	45	Ionic formula aluminium sulfate = $(Al^{3+})_2(SO_4^{2-})_3$ 1 mol of $Al_2(SO_4)_3$ contains 2 mol of positive Al^{3+} ions 0.25mol 0.5 mol					
25	В	56	2-methylpent-2-ene	C ₃ in C=C double bond has 1 hydrogen directly attached to it ∴ H of H-Cl attaches to C ₃ (major product) 2-chloro-2-methylpentane H CH ₃ H H H				

20)23 Higher	Chemistry Marking Scheme				
Long Qu	Answer	Reasoning				
1 a(i)	Greater no. of protons/ nuclear charge holds electrons more tightly	Across a period, the same electron shell is filling up but there is a greater nuclear charge due to the increase atomic number. The outer shell is held more rightly by the nucleus and an electron is harder to remove from the outer shell.				
1a(ii)	b or j	Elements c and k are group 0 elements as they have the highest 1 st ionisation energy in their periods. Group 7 elements have the next highest 1 st ionisation energy and elements b and j correspond to the 2 nd highest ionisation energies.				
1a(iii)A	Answer to include:	1st mark: 2nd electron removed from an electron shell closer to nucleus 2nd mark: 2nd electron is less screened/shielded (than 1st electron removed) or 2nd electron is more strongly attracted to the nucleus				
1a(iii)B	11472	$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
1b(i)	Attraction atom/nucleus has for electrons within a bond	Electronegativity is a measure of the attraction an atom involved in a bond has for the electrons of the bond (shared pair of electrons)				
1b(ii)	Answer to include:	1 st mark: Increased screening/shielding effect (due to more shells) 2 nd mark: Attraction of nucleus/protons for outer electrons decreases				
1b(iii)	Strontium (or Barium or Radium)	Strongest reducing agents are found on the top right hand corner of the electrochemical series. First four in top right corner are group 1 elements and Strontium is the first group 2 element.				
2a(i)	Answer to Include:	1 st mark: (intermolecular) forces increase going down a group 2 nd mark: London dispersion forces are forces broken between molecules 3 rd mark: The more electrons the stronger the LDFs				
2a(ii)	Hydrogen bonding	Hydrogen bonding occurs between molecules containing one of the following bonds: N - H bond O - H bond H - F bond				
2b(i)	34	$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
2b(ii)	40%	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				

	T						
		1st mark: In SiO ₂ covalent bonds are broken London dispersion forces					
		2 nd mark: In SiH4 Van der Waals' forces are broken					
2b(iii)	Answer to include:	Intermolecular forced J					
		3 rd mark: Covalent are stronger than Van der Waals' forces					
		bonds need more energy to break Intermolecular forced					
		₩₩₩ 					
2	400	$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix}$ propane-1,2,3-triol					
3a(i)A	propane-1,2,3-triol	OH OH OH					
		glycerol Single bonds Functional groups 3 hydroxyl between carbons on Carbons 1,2,3 -OH groups					
2 2		A condensation reaction occurs when two molecules join together with a small					
3a(i)B	condensation	molecule removed where they join. The small molecule is usually water.					
30001	carbonyl						
3a(ii) <i>A</i>	cai bonyi	— С — I — С — ОН I — С — Н I С—С—С					
		carbonyl group aldehyde group ketone group					
2 2		Seven carbons in main chain. (hept)					
3a(ii)B	heptan-2-one	Carbonyl functional group between 2 carbons = Ketone (heptanone) Functional group in C2 (heptan-2-one)					
		Primary Secondary Carboxylic					
		Alcohol Acid					
		Oxidation Oxidation reduction					
		* *					
3a(ii)C	reduction	Aldehyde Ketone Aldehyde Ketone					
		Oxidation reduction reduction					
		Carboxylic Primary Secondary Acid Alcohol Alcohol					
		$C_8H_{16}O_2 \longrightarrow C_8H_{14}O_3 \longrightarrow C_7H_{14}O \longrightarrow C_7H_{16}O$					
		C81 116O2					
3a(ii)D	Reaction 1	O:H O:H O:H					
		2:16 3:14 1:14 1:16 1:8					
		Increase Decrease Decrease					
		in O:H in O:H in O:H					
2	Structure drawn of						
3a(iii)	5-hydroxyoctanoic acid	H—C—C—C—C—C—C 					
2 4	10.10	н н н он н н					
3a(iv)A	12-13 minutes	Problem Solving: Interpreting multiple graphs					
3a(iv)B	Dilute the sample or use less sample	When the concentration of the sample is too large the top of the peak is cut off and this prevent the area under the peak from being calculated.					
_	essential	Essential amino acids are amino acids which must be obtained through the diet as					
3b(i)	ESSETTIAL	the body cannot make these amino acids themselves					
	부 부 유	There are 2 amino acids that appear Sidegroup is attached to basic structure of an amino acid to form					
	H-N-Ç-C-OH	twice in the portion of protein structure of an amino acid to form • glutamic acid glutamic acid					
2h	 CH₂	• leucine CH2					
3b(ii)							
	CH₂ I	Only one of those sidegroups CH2					
	соон	make the sidegroup an acid					

3b(iii)	denaturing	When a protein changes shape by a change like heating, the protein changes shape as hydrogen bonds are broken to alter the shape of the protein e.g. spirals of protein unravel.					
3c	separating (into layers)	Emulsifiers had hydrophilic polar. Heads and hydrophobic non-polar tails. The hydrophobic tails stick into non-polar oil/grease droplets and hydrophilic neads stay outside the oil/grease droplets in the polar water. The oil/grease droplets cannot join together are form an oil/grease layer which spoils the appearance of the food.					
3d	Calcium propanoate	Ca ²⁺ (CH ₃ CH ₂ COO ⁻) ₂ is the salt formed by the neutralisation of propanoic acid (CH ₃ CH ₂ COOH) with a calcium-containing base e.g. calcium hydroxide					
4	Open Question Answer to Include:	3 mark answer Demonstrates a good understanding of the chemistry involved. A good comprehension of the chemistry has provided in a logically correct, including a statement of the principles involved and the application of these to respond to the problem. 2 mark answer Demonstrates a limited understanding of the chemistry involved, making some statement (s) which are relevant to the situation, showing that at least a little of the chemistry within the problem is understood.					
5a(i)A	494	0.05 litres glucose solution contains 5.79g glucose 16 litres glucose solution contains 5.79g glucose \times 16/0.05 = 1852.8g glucose gfm $C_6H_{12}O_6 = 180g$ no. of mol = $\frac{\text{mass}}{\text{gfm}} = \frac{1852.8}{180} = 10.3 \text{mol}$ $C_6H_{12}O_6 \longrightarrow 2C_2H_5OH + 2CO_2$ $1 \text{mol} \qquad 2 \text{mol}$ $10.3 \text{mol} \qquad 20.6 \text{mol}$ Volume = no. of mol \times Molar Volume = 20.6 mol \times 24 litres mol ⁻¹ = 494 litres					
5a(i)B	51.1	atom economy = $\frac{\text{Mass of useful produce}}{\text{Mass of reactants}} \times 100 = \frac{2x46}{1x180} \times 100 = \frac{92}{180} \times 100 = 51.1\%$					
5 α(ii)	12.2	% alcohol by volume = $\frac{\text{Change in specific gravity}}{0.7362} \times 100 = \frac{1.075 - 0.985}{0.7362} \times 100 = 12.2\%$					
5b(i)	Answer to include one from:	Acidified dichromate would turn orange to green with methanol and no colour change with propan-2-one. The oxidising agents Fehling's solution and Tollen's reagent would not react with methanol or propan-2-one					
5b(ii) <i>A</i>	terpenes	Terpenes are formed when isoprene C_5H_8 units join together. The terpenes formed have a carbon number with is a multiple of 5, depending in how many isoprenes joined together.					
5b(ii)B	C₅H8 unit circled as shown opposite:	Circled area should resemble a five carbon isoprene unit shown below H_2C CH_2 H_3C CH_2 H_3C CH_2 H_3C CH_2 CH_2 CH_3 CH_4 CH_5 CH_5 CH_6 CH_7 CH_8 CH_8 unit					

5b(ii) <i>C</i>	ethanoic acid	O CH ₃ CH ₃ C CH ₂ C CH ₂ C H ₃ C O CH CH ₂ CH CH ₃ C CH ₃ CH ₃ C CH ₃ CH ₃ C CH ₂ C CH ₂ C H ₃ C OH CH ₂ C CH ₂ C H ₃ C OH CH ₂ C CH ₂ C H ₃ C OH CH ₃ CH ₃ ethanoic acid
5c	or	For 8 hours: 1kg body weight = 10.0mg quinine 70kg body weight = 10.0mg quinine \times 70/1 = 700mg quinine For 24 hours: = 700mg \times 24/8 = 2100mg (=2.1g)
6a(i)A	Curve finishes below reactants	path of reaction Exothermic
6a(i)B	Activated Complex	H——H H CI——CI reactants reactivated complex re
6 a (ii)	Calculation showing:	no. of mol HNO3 =volume x concentration = 1316 itres x 9.5mol t ¹ = 12502mol no. of mol NH3 = \frac{mass}{gfm} = \frac{220000}{17} = 12941mol (available) HNO3 + NH3 \rightarrow NH4NO3 1mol
6a(iii)	100% atom economy	As there is only one product then all reactants end up in the useful product.
6b(i) <i>A</i>	Total number of particles/molecules	The area under the curve is the total number of particles in the sample.

6b(i)B	Graph moves to right	kinetic energy					
6b(ii)	Line to the left of dotted line diagram	Solution of particles and state of the state					
	rate of forward	At equilibrium:					
6c(i)	reaction equals rate	rate of forward reaction = rate of reverse reaction					
	of reverse reaction	(and concentration of reactants and products are constant) 1st and equilibrium shifts to					
6c(ii)A	Answer to include:	1st mark: right hand side or increases yield of ammonia 2nd mark: decreases the rate of reverse reaction or increases yield of ammonia rate of forward reaction is then greater than rate of reverse reaction					
6c(ii)B	One answer from:	recycling of unused air is a low cost or free uses a catalyst gases/reactants resource (to reduce energy costs)					
6d(i)	4NH ₃ +3O ₂	$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
Od(i)	2N ₂ +6H ₂ O	add 30^2 + 6H ₂ O + 12e 120H ⁻ 6 4NH ₃ + 120H ⁻ 2N ₂ + 12 H ₂ O + 12e					
		3O₂ + 4NH₃ → 2N₂ + 6H₂O Reducing Agent: reduced something else and is oxidised itself.					
6d(ii)	ammonia or NH₃	NH ₃ is oxidised and loses electrons: $2NH_3 + 6OH^- \rightarrow N_2 + 6H_2O + 6e^-$					
7a(i)	hard water	Hard water contains large quantities of (usually) calcium Ca^{2+} ions. These ions react with soap to form an insoluble precipitate known as scum.					
7a(ii)	hydrophilic	hydrophilic The ionic head of a detergent molecule is hydrophilic as it is polar and dissolved in water hydrophobic The hydrocarbon tail of a detergent molecule is hydrophobic as it is non-polar and will not mix with water. The hydrocarbon tail will stick into non-polar oil/grease instead					
7a(iii)	8.37×10 ⁻⁴ or 0.000837	no. of mol EDTA = volume × concentration = 0.0093 litres × 0.0045 mol F^1 = 4.185×10 ⁻⁵ mol $Ca^{2+} + C_{10}H_{12}N_2O_8^{4-} \longrightarrow [Ca(C_{10}H_{12}N_2O_4)]^{2-}$ 1mol 1mol 4.185×10 ⁻⁵ mol 4.185×10 ⁻⁵ mol concentration = $\frac{\text{no. of mol}}{\text{volume}} = \frac{4.185\times10^{-5} \text{mol}}{0.05 \text{litres}} = 8.37\times10^{-4} \text{mol}$					

7b	4.4 to 5.4	Draw a best fit straight line on graph ignoring the rogue point at 4mg l ⁻¹ . Draw a line horizontally from Absorbance = 0.08 to the best fit straight line and				
		then vertically go down to x-axis to read the concentration.				
7c(i)	Answer to include:	1st Mark: Trichloromethane is polar. and Tetrachloromethane is non-polar. Trichloromethane has a permanent dipole.				
		and letrachloromethane has no permanent dipole.				
7c(ii)	-14	Bond Breaking Steps (endothermic) Bond Forming Steps (exothermic) 1xC-H bond 1x 412kJ = 412kJ 1xC-H bond 1x 412kJ = 412kJ 3x C-Cl bonds 3x 338kJ = 1014kJ 2xC-F bonds 2x 484kJ = 968kJ 2xH-F bond 2x 570kJ = 1140kJ 1xC-Cl bonds 1x 338kJ = 338kJ 2xH-Cl bond 2x 431kJ = 862kJ Total bond breaking = 2566kJ Total bond forming = 2580kJ Enthalpy change = ∑Bond Breaking Steps - ∑Bond forming steps = 2566 - 2580 = -14kJ mol⁻¹				
		3 mark answer 2 mark answer 1 mark answer				
8	Open Question Answer to Include:	Demonstrates a good understanding of the chemistry involved. A good comprehension of the chemistry has provided in a logically correct, including a statement of the principles involved and the application of these to respond to the problem. Demonstrates a reasonable understanding of the chemistry involved. The candidate has made some statement(s) which are some statement(s) which are relevant to the situation, showing that at least a little of the chemistry within the problem is understood.				
9a(i)	1 mark each:	1 st Mark: Longer the carbon chain the higher the boiling point 2 nd Mark: Further Down group 7 the halogen is the higher the boiling point				
9a(ii)	Permanent dipole to permanent dipole attractions.	The carbon – halogen C-X bond is a polar bond due to the difference in electronegativities between the two elements. Permanent dipoles are formed when the electrons in the bond are shared unequally. The element with the higher electronegativity has a slightly negatively charge (δ -). The halogen in the C=X bond will carry the δ - charge. Permanent dipole to permanent dipole attractions bring the molecules closer together and raise the boiling point as a result.				
9b(i)	One answer from:	2 carbons attached to the carbon with the halogen attached. 1 hydrogen attached to the carbon with the halogen attached.				
9b(ii)	H Br H	To be an isomer of 2-bromobutane then must have formula C ₄ H ₉ Br. To be a tertiary haloalkane, structure must have three carbons/no hydrogens attached to the carbon with the bromine attached.				
9c(i)	Ultraviolet light or u.v.	Ultraviolet light is required to provide the energy required to split the covalent bond in halogen in the initiation step.				
9c(ii)	One answer from:	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				
9d	H H H H 	Tollen's Reagent and Fehling's solution will react with aldehydes only. • R C_4H_8O must be an ketone if it does not react with Tollens and Fehling's. • Q C_4H_9OH must be a secondary alcohol if it is oxidised into ketone R Haloalkane P \rightarrow Alcohol Q \rightarrow Ketone R C_4H_9Br \rightarrow C_4H_9OH \rightarrow C_4H_8O H H H H H H H H H H H H H H H H H H H				
9e	Answer shown:	2-bromo-3-chloro-1,1,1-trifluoropentane				

		Mark Version 1 Version 2 Version 3					
10a	Answer to include:	Tare the balance with the crucible	cible.				
10b(i)	to allow gas/CO2 to escape	The gas formed in the reaction will build up in the crucible under the lid. Lifting the lid will prevent. Pressure building up that could dislodge the lid.					
10b(ii)	reactants/products are not flammable	unsen burners should be replaced with non-flammable heating methods like ates and heating mantles when the reactants or products are flammable.	e hot				
10c	0.582	ass of crucible before heating = 1.598g mass of crucible after heating = 1.294g ass of CO_2 released = 1.598g - 1.294g = 0.304g fm CO_2 = 44g no. of mol = $\frac{\text{mass}}{\text{gfm}}$ = $\frac{0.304}{44}$ = 0.00691mol MgCO ₃ \longrightarrow MgO + CO ₂ 1mol 0.00691mol 0.00691mol fm MgCO ₃ = 84.3g mass = no. of mol × gfm = 0.00691 × 84.3 = 0.582g					
10d(i)	conical flask excess acid magnesium carbonate å magnesium oxide						
10d(ii)	carbon dioxide has low solubility in water	nly gases that are insoluble or have low solubility in water should be collecater this water. There is some loss of gas during the process. The best would be collect CO_2 in a gas syringe so there is no loss of any gas by dissolving in wa	ay to				