

Grade Awarded	Mark Required		$\%$ candidates achieving grade
	$(/ 120)$	$\%$	
A	+	$\%$	$\%$
B	+	$\%$	$\%$
C	+	$\%$	$\%$
D	+	$\%$	$\%$
No award	$<$	$<\%$	$\%$

Section:	Multiple Choice	Extended Answer	Assignment
Average Mark:	125	$/ 95$	No Assignment in 2023

2023 Higher Chemistry Marking Scheme		
$\begin{aligned} & M C \\ & Q u \end{aligned}$	Answer	Reasoning
1	A	∇A Electronegativies $\mathrm{Na}=0.9$ \＆ $\mathrm{I}=2.7 \therefore$ difference $=1.8$（least ionic character） 囚B Electronegativies $\mathrm{Na}=0.9 \quad \& \mathrm{~F}=4.0 \therefore$ difference $=3.1$ 囚C Electronegativies $K=0.8 \quad \& I=2.7 \therefore$ difference $=1.9$ खD Electronegativies $K=0.8 \quad \& F=4.0 \therefore$ difference $=3.2$（greatest ionic character）
2	D	खA N－H bond in structure \therefore hydrogen bonding would occur between molecules खB O－H bond in structure \therefore hydrogen bonding would occur between molecules खCN－H bond in structure \therefore hydrogen bonding would occur between molecules \quad D No N－H，O－H or H－F bonds in structure \therefore no hydrogen bonding between molecules
3		
4	A	VA Activation of reverse reaction $=200-50=+150 \mathrm{~kJ} \mathrm{~mol}^{-1}$ खB Enthalpy change for reverse reaction $=50-150=-100 \mathrm{~kJ} \mathrm{~mol}^{-1}$ 区C Activation of forward reaction $=200-150=150 \mathrm{~kJ} \mathrm{~mol}^{-1}$ 囚D Enthalpy change for forward reaction $=150-50=+100 \mathrm{~kJ} \mathrm{~mol}^{-1}$
5	C	$\text { time }=10 \mathrm{~s} \quad \therefore \text { rate }=\frac{1}{\text { time }}=\frac{1}{10 \mathrm{~s}} 0.1 \mathrm{~s}^{-1}$ Extrapolate from graph：when rate $=0.1 \mathrm{~s}^{-1}$ then concentration $=0.25 \mathrm{~mol} \mathrm{l}^{-1}$
6	B	囚A catalyst speeds up reaction so dotted line would be steeper initially $\begin{aligned} & \text { B dotted line is steeper at start and meets full line at horizontal end of line }\end{aligned}$ $\boxtimes C$ catalyst does not change final concentrations so dotted line would meet full line at end QD catalyst speeds up reaction so dotted line would be steeper initially
7	B	$\begin{aligned} 1 \mathrm{~mol} \mathrm{CH}_{3} \mathrm{OH}=-726 \mathrm{~kJ} \mathrm{~mol}^{-1} & =32 \mathrm{~g} \\ & -145.2 \mathrm{kJmol}^{-1} \end{aligned}=32 \mathrm{~g} \times \frac{-145.2}{-726}\left(\begin{array}{l} \\ \end{array}\right.$
8	A	VA Sodium Na atom（covalent radius $=160 \mathrm{pm}$ ）is larger than sodium Na^{+}ion（ionic radius $=102 \mathrm{pm}$ ） खB Chloride Cl^{-}ion（ionic radius $=181 \mathrm{pm}$ ）is larger than chlorine Cl atom（covalent radius $=100 \mathrm{pm}$ ） 区C Magnesium Mg^{2+} ion（ionic radius $=72 \mathrm{pm}$ ）is smaller than magnesium Mg atom（covalent radius $=140 \mathrm{pm}$ ） WD Oxygen O atom（covalent radius $=64 \mathrm{pm}$ ）is smaller than oxide O^{2-} ion（ionic radius $=140 \mathrm{pm}$ ）
9	C	$\boxtimes A$ Covalent molecular is found in both elements e．g． O_{2} and compounds e．g． $\mathrm{H}_{2} \mathrm{O}$ 囚B Covalent network is found in both elements e．g． C （diamond）and compounds e．g． SiO_{2} $\boxtimes C$ Monoatomic structures are only found in elements QD Ionic structures are only found in compounds containing metals and non－metal elements
10	B	Q A 2－methylbutanal $\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}$ is not an isomer of hexanal $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}$ $\checkmark \mathrm{B} 3$－methylpentan－2－one $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}$ is an isomer of hexanal $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}$（same formula different structure） खC 2，2－dimethylbutan－1－ol $\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{O}$ is not an isomer of hexanal $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}$ 区D 3，3－dimethylpentanal $\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{O}$ is not an isomer of hexanal $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}$

1	C	
12		区A Formation of carbon monoxide indicated incomplete combustion not complete combustion囚B Formation of carbon monoxide indicated incomplete combustion not complete combustion XC enthalpy of combustion is the complete combustion of 1 mole of a substance $చ \mathrm{D}$ The energy change for the complete combustion of 1 mol of a substance
1		XA ethyl ethanoate and water in B will react to form ethanol and ethanoic acid and form an equilibrium区 B ethyl ethanoate and water in B will react to form ethanol and ethanoic acid and form an equilibrium XC ethanol and ethanoic acid react to form ethyl ethanoate and water in A and form an equilibrium ethyl ethanoate and water in B will react to form ethanol and ethanoic acid and form an equilibrium VD Flask A is the reactants at 100% and Flask B is the products at 100% ．They will reach the same equilibrium eventually with ethyl ethanoate，water，ethanol and ethanoic acid present in both flasks at the same cocentrations．
14		Write Down main species IO_{3}^{-} $\longrightarrow \mathrm{I}_{2}$ Balance all atoms other than oxygen and hydrogen $2 \mathrm{IO}_{3}^{-}$ $\longrightarrow \mathrm{I}_{2}$ Balance O by adding $\mathrm{H}_{2} \mathrm{O}$ to other side $2 \mathrm{IO}_{3}^{-}$ $\longrightarrow \mathrm{I}_{2}+6 \mathrm{H}_{2} \mathrm{O}$ Balance H by adding H^{+}ions to other side $2 \mathrm{IO}_{3}^{-}+12 \mathrm{H}^{+}$ $\longrightarrow \mathrm{I}_{2}+6 \mathrm{H}_{2} \mathrm{O}$ Balance charge by adding e^{-}to most positive side $2 \mathrm{IO}_{3}^{-}+12 \mathrm{H}^{+}+10 \mathrm{e}^{-} \longrightarrow \mathrm{I}_{2}+6 \mathrm{H}_{2} \mathrm{O}$
15		囚A Condensation： 2 molecules join together with small molecule e．g．water removed at join खB Hydration：Addition reaction where $\mathrm{H}_{2} \mathrm{O}$ is added across a $C=C$ double bond 囚C Reduction：decrease in oxygen ：hydrogen ratio VD Oxidation：increase in oxygen ：hydrogen ratio $\left(\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{ON} \rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{2} \mathrm{~N}\right)$ O： H ratio $1: 7 \rightarrow 2: 5$
16	B	囚 $3 \times-\mathrm{OH}$ group makes A the $2^{\text {nd }}$ most polar molecule and A is the $3^{\text {rd }}$ peak left to right ∇B no－OH groups makes B the least polar molecule and B is the $1^{\text {st }}$ peak left to right（ Z ）区C $2 x-O H$ group makes C the $3^{\text {rd }}$ most polar molecule and C is the $2^{\text {nd }}$ peak left to right ख $6 \times-\mathrm{OH}$ group makes D the most polar molecule and D is the $4^{\text {th }}$ peak left to right
17	C	XA Draft shield would reduce heat loss to the surroundings 囚 B the thermometer in the diagram is too close to the flame and might give inaccurate temp ∇C glass beaker would reduce the heat transfer to the water compared to a copper can凹D Stirring the water would mix the water better and give a more accurate temp
18	B	खA head of soap in ionic and therefore polar $\checkmark B$ ionic head dissolves in polar water and non－polar tail dissolves in non－polar oil $\boxtimes C$ head of soap in ionic and therefore polar XD ionic head is polar and dissolves in polar water rather than non－polar head
19	C	$\boxtimes A$ unreacted nickel oxide must be removed by filtration before evaporation takes place区B the filtration of nickel oxide must be followed by evaporation of water to form salt ∇C the unreacted nickel oxide is filtered to remove it and the evaporation that follows removes the water from the nickel sulfate solution to leave nickel sulphate salt XD the unreacted nickel oxide must be filtered before evaporation takes place
20	B	$\boxtimes A$ ethanal $\mathrm{CH}_{3} \mathrm{CHO}$ is an aldehyde and does not react with alkalis $\nabla \mathrm{B}$ ethanoic acid $\mathrm{CH}_{3} \mathrm{COOH}$ is a carboxylic acid and is neutralised by alkalis． $\boxtimes C$ propanone $\mathrm{CH}_{3} \mathrm{COCH}_{3}$ is a ketone and does not react with alkalis खD ethan－1－ol $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$ is a primary alcohol and does not react with alkalis

21	D	XA Secondary alcohol: 2 carbons directly attached to the carbon with -OH group区B Secondary alcohol: 2 carbons directly attached to the carbon with -OH group $\boxtimes C$ Tertiary alcohol: 3 carbons directly attached to the carbon with - OH group \square D Primary alcohol: 1 carbon directly attached to the carbon with -OH group
22	A	4-methylpentan-2-one is a ketone which reduces to form the secondary alcohol 4-methylpentan-2-ol. gfm 4-methylpentan-2-one $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}=(6 \times 12)+(12 \times 1)+(1 \times 16)=72+12+16=100 \mathrm{~g}$ gfm 4-methylpentan-2-ol $\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{O}=(6 \times 12)+(14 \times 1)+(1 \times 16)=72+14+16=102 \mathrm{~g}$
23	D	
24	A	```Ionic formula aluminium sulfate =(A1 }\mp@subsup{}{}{3+}\mp@subsup{)}{2}{}(\mp@subsup{\textrm{SO}}{4}{2-}\mp@subsup{)}{3}{ 1 mol of }\mp@subsup{\textrm{Al}}{2}{}(\mp@subsup{\textrm{SO}}{4}{}\mp@subsup{)}{3}{}\quad\mathrm{ contains 2 mol of positive Al }\mp@subsup{}{}{1++}\mathrm{ ions 0.25mol 0.5 mol```
		C_{2} in $C=C$ double bond has C_{3} in $C=C$ double bond has no hydrogens directly attached to it 1 hydrogen directly attached to it $\therefore C$ of $\mathrm{H}-\mathrm{Cl}$ attaches to C_{2} (major product) $\therefore \mathrm{H}$ of $\mathrm{H}-\mathrm{Cl}$ attaches to C_{3} (major product)
25	B	

5 b (ii) C	ethanoic acid	
$5 c$		For 8 hours:1 kg body weight $=10.0 \mathrm{mg}$ quinine 70 kg body weight $=10.0 \mathrm{mg}$ quinine $\times 70 / 1$ $=700 \mathrm{mg}$ quinine $=700 \mathrm{mg} \times \times^{24 / 8}$ $=2100 \mathrm{mg} \quad(=2.1 \mathrm{~g})$
$6 a(i) A$	Curve finishes below reactants	
$6 a(i) B$	Activated Complex	
$6 a(i i)$	Calculation showing:	no. of $\mathrm{mol} \mathrm{HNO}_{3}=$ volume \times concentration $=1316$ litres $\times 9.5 \mathrm{~mol}^{1}=12502 \mathrm{~mol}$ $\begin{aligned} & \text { no. of } \mathrm{mol}_{\mathrm{NH}_{3}}=\frac{\text { mass }}{\mathrm{gfm}}=\frac{220000}{17}=12941 \mathrm{~mol} \text { (available) } \\ & \underset{\substack{1 \mathrm{~mol}_{3} \\ 12502 \mathrm{~mol}}}{\mathrm{HNO}_{3}}+\underset{\substack{1 \mathrm{~mol}_{1} \\ \mathrm{NH}_{3}}}{ } \rightarrow \mathrm{NH}_{4} \mathrm{NO}_{3} \end{aligned}$ More NH_{3} available (12941mol) than is required (12502mol) to react all HNO_{3} $\therefore \mathrm{NH}_{3}$ is in excess and HNO_{3} is the limiting reactant
6a(iii)	100\% atom economy	As there is only one product then all reactants end up in the useful product.
$6 b(i) A$	Total number of particles/molecules	The area under the curve is the total number of particles in the sample.

$10 a$	Answer to include:	Mark	Version 1	Version 2	Version 3
		1st Mark	Tare the balance with the crucible	Tare a weighing boat, transfer the 1.5 g onto the weighing boat. Record mass. Transfer into the crucible.	Weigh mixture and weighing boat, record the mass. Transfer mixture into the crucible.
		$\begin{gathered} \hline 2^{\text {nd }} \\ \text { Mark } \end{gathered}$	Transfer 1.5 g (into the crucible)	Reweigh the weighing boat and record the mass/calculate the difference	Reweigh the weighing boat and record the mass/calculate the difference
$10 b(i)$	to allow gas $/ \mathrm{CO}_{2}$ to escape	The gas formed in the reaction will build up in the crucible under the lid. Lifting the lid will prevent. Pressure building up that could dislodge the lid.			
10 b (ii)	reactants/products are not flammable	Bunsen burners should be replaced with non-flammable heating methods like hot plates and heating mantles when the reactants or products are flammable.			
$10 c$	0.582	mass of crucible before heating $=1.598 \mathrm{~g}$ mass of crucible after heating $=1.294 \mathrm{~g}$ mass of CO_{2} released $=1.598 \mathrm{~g}-1.294 \mathrm{~g}=0.304 \mathrm{~g}$ $\mathrm{gfm} \mathrm{CO}_{2}=44 \mathrm{~g}$ $\begin{gathered} \text { no. of } \mathrm{mol}=\frac{\text { mass }}{g f \mathrm{~m}}=\frac{0.304}{44}=0.00691 \mathrm{~mol} \\ \mathrm{MgCO}_{\substack{1 \mathrm{~mol} \\ 0.00691 \mathrm{~mol}}} \longrightarrow \mathrm{MgO}_{2}+\underset{\substack{1 \mathrm{~mol} \\ 0.00691 \mathrm{~mol}}}{\mathrm{CO}} \end{gathered}$ $\mathrm{gfm} \mathrm{MgCO}_{3}=84.3 \mathrm{~g}$ mass $=$ no. of $\mathrm{mol} \times \mathrm{gfm}=0.00691 \times 84.3=0.582 \mathrm{~g}$			
$10 \mathrm{~d}(\mathrm{i})$					
$10 \mathrm{~d}(\mathrm{ii})$	carbon dioxide has low solubility in water	Only gases that are insoluble or have low solubility in water should be collect over water this water. There is some loss of gas during the process. The best way to collect CO_{2} in a gas syringe so there is no loss of any gas by dissolving in water.			

